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The Debye-Walker factor, e-ilV, for tin is calculated using the A-S (axially symmetric) lattice dynamics 
model described in an earlier paper. The Debye continuum approximation is found to be unsatisfactory 
because the optical modes contribute significantly even at low temperatures. Calculated and experimental 
values determined from Mossbauer measurements are in excellent agreement in the temperature range 
from 0 to 300·K. Discrepancies above 300·K are attributed to higher order corrections such as nnharmonici
ties and diffusion effects. In tin, the Debye-Waller factor depends upon the direction of gamma ray emission 
with the ratio 2W./2W. varying from 1.1 to 1.2 for T=O·K and T=300·K, respectively. The calculated 
anisotropy in 2W is compared with available experimental data. Dispersion curves and values of 2W calcu
lated using Rayne and Chandrasekhar elastic data are compared with those calculated using Mason and 
Dommel elastic data. The effect of the relative motion of the two sublattices on the elastic properties of tin 
is discussed and found to be important for the elastic constants of Rayne and Chandrasekhar. 

I. INTRODUCTION (1) 

T HE probability of a gamma-ray emission without 
energy transfer to or from the lattice1•2 and the 

temperature dependence of the atomic .structure factor 
in the reflection of x rays3 is given by 

where 2W is related to the mean square displacement of 
an atom along a definite direction. 

1 R. L. Mossbauer, Z. Physik 151, 124 (1958). 
t W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939). 
• R. W. James, TM Optical Principles of the Diffraction oj X -Rays 

(G. Bell and Sons, London, 1953). 

Since the experimental determination of f for tin 
has only been investigll.ted through a study of the 
temperature dependence of recoil-less 'Y emission the 
constant 2W is defined for this specific case. Hence, 

2W=R LQ LI [",a. ea (q,j)]g[w (q,j)], (2) 
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FIr.. I. Di5pcrsion curves for white tin along [100J direction in the 
Brillouin zone using Rayne and Chandrasckhar c1a~tic data. 

g[w(q,j)] = 1 { 1 - +1} , 
Nliw(q,j) exp[ltw(q,j)/ ll7] - 1 

(3) 

where N is thc number of unit cells, N is th e recoil 
cncrgy of a free emitting atom, II. is Planck's constant 
divided by h, Ie is the Boltzmann constant , T is the 
absolute temperature, q is the propagation vector, and 
j is the polarization of a vibrational wave of thc crystal. 
C/ refers to the speciflc lattice from which the 'Y ray is 
being emitted or absorbed, Va is a unit vector in the 
dircction of emission of the 'Y ray, ea(q,j) is the polariza
tion vector of the vibrational wave. 

The purpose of this paper is to provid e accurate 
theoretical values for the Debye-Wallcr farlO[' for whi le 
tin in the temperature region of the harmonic approxi
mation. Calculations of this type are neccss<lry in order 
to determine the extent to which th e existing theory 
agrees with experimental results .4 In this paper, Eq.(2) 
is evaluated using the theoretical frequ ency spectrum 
and polarization vectors for white tin calculated from 
the elastic data. 

In a previous paper,5 referred to as WLD, the fre-

4 A rough order of magnitude calcullttion of th e anisotropy ratio 
for tin in agreement with our results has heen reported rrcenlly 
hy Yu. Kagan. [Dok!. Abd. Nauk SSSR HO, 794 (1961) [transla
tion : Soviet Phys.- Dokl:vty 6, 881 (1962)J) . I[ow('vrr, in view 
of the methods used by Kagan in evaluating this rat io, we con
clude that this :tgreelllent is :tccidental, inasl11uch :ts I he optical 
modes were not included. Kagan's expressions require a detailed 
knowledge of the rlensity of states-a qu:tntity not. 10 he oht:tinerl 
in any simple manner analytically for :t real crysla l. II is density 
of states is derived from a simplified nearest nrighbor l:ttlicc ely
n:tmics model in which the dyn:tmic:tl matrix is diagon:d :\11(1 conse
quently inconsistent with the elastic-dyn.amic matrix. In addition, 
the model does not apply to the actual structure of tin. Having 
omitted the optical mode contributions, the expressions derived 
are not valid since the optical modes contribute significantly, 
particularly at low temperatures as is shown frolll specific heat 
data and by our detailed calculations. 

I T. Wolfram, G. W. Lehman, and R. E. DeWames, Phys. Rev. 
129, 2483 (1963). 

I 
\ 

quenc)' spectrum for white tin was calculated using the 
elastic const.ants reported by Mason and Bomme1.8 

In thi s paper we also calculate the frequency spectrum 
\I sing the clas tic constants of Rayne and Chand rase
khar.7 In Sec. II the dynamic matrix for the acoustic 
frequen cies is obtained induding the interaction of the 
optical motion. In the long-wavelength limit this matrix 
reduces to an efTective elastic matrix in which the efTect 
of the relative motion of the two sublattices is retained. 
The method of calculation with the resulting dispersion 
curves is also presented. 

In Sec. III, the constant 2W is expressed as a quad
ratic function of the components of !iY

• The method and 
results of our calculations are presented in Sec. IV. 

II. EFFECT OF OPTICAL MOTION ON 
THE ACOUSTIC MATRIX 

In this section we consider the interaction of the 
optical and acoustical modes and show that the acoustic 
frequencies are in general depressed. This depression 
can be understood in terms of a mixing of relative sub
lattice motion into the "pure" acoustic motion in which 
the two sublatlices are moving as a unit. In the long
wavelenglh (L-W) limit the oplic-acoustic interaction 
i ~ proport ional to q4 for crystals with an inversion center 
hut proportional to q2 otherwise. ConsequcnLly, the 
elastic properties of crystals without an invcrsion 
center, such as white tin, will contain an optic-acoustic 
interaction term while crystals with an inversion center 
will not. In this section we obtain the corrected L-W 
acoustic matrix. 

In WLD, the form of the dynamic matrix for white 
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FIG. 2. Dispersion curves for white tin along [110J direction in the 
Brillouin zone using Rayne and Chandrasekhar elastic data. 

e W. P. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28,930 
(1956). 

7 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658 
(1960). 
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tin in the center-oC-mass system was discussed. T he 
dynamic equations in this system are 

( I) 

where :.o(q) is the dynamic supermatrix in the cent er-of
mass system with clements 

:Dll(q)=Du+ ReD 12, 

:D12(q) = :D2l (q) = - ImD12, (5) 

and the D i j are 3X3 supermatrices described in WLD. 
The vector XI is the "pure" acoustical (in-phase) motion 
of the two sublattices and Xz is the "pure" optical (ou t
of-phase) motion. Using partitioning, we obtain the 
dynamic equations for the acoustic frequencies 
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1'1(: . 4. J)i spc r~ioll curves for white tin along [100] direction in 
the Brillouin zone using Mason and Rommel clastic data. 

(6) q2 so that the acoustic matrix reduces to 

This equation is exact and shows that the acoustic 
frequencies are lowered by the presence of optical 
modes. The eigenvalues oC :DII and :D22 are th e "pure" 
acoustical and optical frequencies, respectively. :Dn 
is the optic-acoustic interaction matrix. As q --) 0 th e 
eigenvalues of :.011 and :.0 12 vanish. The mat rix ~D ~2 , 
however, approaches a diagonal form with large constan t 
eigenvalues, the optical frequencies . . ( :D 22-W~) I C; 1Il 

be expanded in a power series in :.022-1, 

(:D22-W2)- 1= :.o22-1+W2:.o22-2+W·:.o~2-3+ . . ' . (7) 

This series converges very rapidly in the L-W Ii mi t si nee 
[w --) OJ while the eigenvalues of :Dn approach 1026 

sec2• In the elastic limit one retains only terms of order 
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The interaction matrix, :.012, is proportional to q2 
for crystals with an inversion center and consequently 
the second term in Eq. (8) is proportional to q4 and 
may be neglected. On the other hand, for crystals with
out a center inversion, :D12 is proportional to q so that 
th e optic-acoustic correction must be retained. Physi
cally, ho wever, we expect the correction to be sl1lall 
compared to " pure" acoustic frequencies. In WLD, the 
frequellcy spec l rum for white tin was calculated using 
th e elas Li c constants reported by Mason and nommel 
(sec Table I). In this case the correction term could be 
ignored si !l CC i L caused only negligible corrections 
(about 3%). Th e clastic constants repor ted by Rayne 
and Chand rasekhar,1 (s'ee Table I) also by House and 
Vernon,8 imply in our model a much larger optic-acoustic 
interaction. In addi tion, these constants give rise to a 
much lower transverse acoustic branch along the [11OJ 
direction. Consequently, it is necessary to use Eq. (8) to 
determine the atomic force constants. Equating Eq. (8) 
to the elastic matrix as discussed in WLD yields quad
ratic algebraic equations relating the atomic force con
stants to the elastic constants. The value of Wav and t 
were chosen accord ing to the procedure in WLD. The 
A-S atomic force constan ts for the two calculations are 
given in Table II . 

Using the clasti c data of Mason a11(l nornmcl it was 
possible to satisfy a ll equations within the experimental 
error in the elastic constants. However, with the elastic 
data of Rayne and Chandrasekhar, it was not possible 
to obtain total consistency among all the equations. 
This resulted because the A-S model implies that 

(9) 

FIG. 3. Dispersion curves for white tin along [001] direclion ill the 8 D . G. Honse alld E . V. Vernon, Brit. J. Appl. Phy.s. 11, 254 
Brillouin zone using Rayne and Chandrasckhar clastic dat ~L. (1960) . . 
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Ih(' lInl ouln WIIC IIRlng MIIRon nnd HOmlllel ClllKllc (111111. 

This condition is well sntisfied for the constants of MaRon 
nnd IH.immel, but for Rnyne nIH! Chlmdrn!'\chknr's 
data it is not. 

The elTect of the inconsistency is to lowcr (h e f\ lIOtsi
transverse branch by 40% and raise the <lll:tsiiollgiludi 
nal branch by 10% along the [101J directioll. /\11 oLher 
branches along the principal direcLions ill cluding Lhe 
pure transverse branch along the [101 J ciirection arc 
unalTeclecl. 

The resulting dispersion curves are shOll'1l in Figs. 
1-3. for comparison figs. 4-6 show the dispersion cu rves 
obtained in WLD. The value of the optical frequencies 
at q = 0 are larger than in WLD. This is necessary in 
order to keep the optic-acoustic interaction small. In 
order to remove the condition on the elasLic constants 
imposed by the A-S model one needs to consider a full 
tensor force model. This, however, will introduce more 
parameters which obviously could not be determined 
without experimental dispersion curves. In WLD it is 
shown that, for any atomic force model, it is necessary 
to include at least fourth neighbors in order to be con
sistent with elastic theory. 

III. 2 W FOR WHITE TIN 

White tin has a body-centered tetragonal structure 
with two atoms per unit cell. The structure is two inter
penetrating body centered tetragonal lattices with lat
tice basis (0,0,0), (O,t,t). The superscript C'/ is left out 
in what follows since the constant 2W must be the same 
for either lattice. 

Equation (2) can be expressed as an inner product 

2W = R(p,Ilp), 

p= (Pz,Pv,P.), 

where the elements of the [{ matrix are given by 

Il n, ... = Lq LJ g[w(q,j) Jcn(q,j)e m* (If,i)· 

(10) 

(11) 

TI\III. I-: 1. RI)OI11 temperalure cll\slic consll\nls (or white tin 
(in unils 10" dyn cm-2) . 

. Mnson and Rayne and 
COllsl:Lllts Blimmcl Chandrasckhllr 

CII 7.33 7.23 
Cu 8.74 8.840 
C .. 2.19 2.203 
Cu 2.25 2.400 
CII 2.38 5.94 
CII 2.48 3.58 

W!le~ the c?orclinnte axes arc chosen to lie along the 
prmclpal aXIs of the crystal, 2W must be a quadratic 
funclion of the components of g. Hence, 

211' = R( pHI u+PuW vv+pHI,,}, (12) 
or 

= N{ (P:.2+Pv2)1I u+p.2J1 .. ), (13) 

since t1~e cryslitl hits n fourfold axis of symmetry. It is 
convCllIcnt to exprcss Eq, (13) in the form 

2W = RJI .. (T){ E(T)-/l2[E(T)-1J}, 

whcre t(T)= lI u (T)/II .. (T), /l=cosO, 0 is the angle 
between!.' and thc principal axis. 

IV. RESULTS 

In order to calculate the constant 2W the vibration 
frcquenci.cs and polarization vectors for an arbitrary 
propagatIOn vector q were determined using the axially 
symmetric lattice dynamics model described in a previ
ous paper.9 

The 1/%% and 1/ .. matrix elements [Eq. (11)] were 
evaluated by integrating over fir of the Brillouin zone 
appropriate to white tin. This portion of the Brillouin 
zone was divided into two regions which were trans
formed in to unit cubes by nonlinear transformations. A 
triple Gaussian quadrature was used to evaluate the 
result ing integrals. 

The 6X6 dynamical matrix for white tin was diago
nalized by a 2X2 Jacobi rotation procedure at 1024 
points in each region. The polarization vectors for 

TABLE II. A- S force constants (in units of 10' dyn cm-(). 

Constants r" lIb 

K, (1,12) 0.9183 0 .2945 
C2 (1,12) 1.515 1.472 
K, (2,1 1) 1.757 1.551 
C2 (2, 11) 0.7575 -0.7362 
K, (3,12) 1.276 2.446 
C2(3,12) -0.736 0.7404 
K, (4,11) 0.4206 0 .7054 
Ct (4,11) -0.1979 -0.6688 

• Uelng Mason and BlSmmel elastic data. 
o Using Rayne and Chandrasekhar elastic data. 

• G. W. Lehmnn, T. Wolfram, and R. E. DeWllmes Phys Rev 
128, 1593 (1962) . ' . . 
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TABLE III. Comparison of experimental and calculated values for the polycrystal Oebye-Waller factor. 

Wiedemann· Boyle Barloulandb Alekseyevsky Oebye model 
T(°K) et al. el al. e/ al. e/ al. Ie lId 6D= 142 oK 

4 (0.53), ~0.60) 0.63 0.61 0.73 
20 (0.52), 0.59) 0.61 0.70 
77 (0.39), (0.40) (0.40) (0.32 ±0.06) 0.40 0.37 0.46 
90 (0.30±O.07), (O.32±0.015) 

150 0.22 0.22 0.18 
300 Om5 (0.061 ±0.015) 0.053 0.036 0.07 
400 0.009 0.011 
500 0.002 0.008 0.004 0.012 

• W. II. Wleuemonn. P. Kienle. nnd F. Pobell. Z. Physik 166. I(W «('1(,l). 
b R. Darloulond. J . O. Picon. nnd C. Tzara. Compl. Renu . 250. HilS (1960). 
• U.lnll Moson nnd Dllm",el elastic unln. 
d Using Rayne and Chantlrasekhar elastic dola. 

points lying outside the fundamental -h of the Brillouin 
zone were obtained by means of symmetry operations 
of the D4h group. Several checks were macle to insure 
that our values of II m.m were independent of order of 
the Gaussian quadrature. 

The experimental and calculated temperature de
pendence of the polycrystalline Debye-Waller factor 
is given in table III showing good agreement from 0 to 
300 OK. The values calculated using Rayne and Chan
drasekhar's elastic data seem to give the best over-all 
fit; however, with the present experimental accuracy it 
does not seem possible to select between the two calcu
lations. For comparison, the temperature dependence of 
Debye-Waller factor calculated from the Debye approxi
mation with OD= 142°K, as suggested in a previous 
analysislO is also shown in Table Ill. Clearly, our re~;ults 
indicate that the Debye model docs not give a good 
representation of the frequency spectrum of tin and 
that one is not justified in accounting for the clifTerence 
between experimental values ancl calcula.ted values 
using the Debye approximation by introducing higher 
order corrections such as anharmonicities. The dcvial ion 
of experimental values from calculated values using A-S 
model above 3000 K can now probably be aLlributed to 
higher order corrections. The elTect of anharmonicities 
is presently being investigated. 

TABLE IV. Temperature dependence of 1l .. (T) and .(T). 

1l .. (T)" 1l .. (T)b 
(in units of (in units of 

T(OK) 103 eV-I) .(T)" 103 eV-I) .(T)b 

4 0.169 1.106 0.174 1.106 
6 0.170 1.106 0.175 1.106 

15 0.175 1.109 0.183 1.109 
50 0.233 1.15 0.260 1.14 
77 0.304 1.17 0.345 1.15 

150 0.526 1.19 0.606 1.16 
300 1.01 1.2 1.17 1.17 
400 1.34 1.2 1.56 1.17 
500 1.68 1.2 1.95 l.t7 

• Uelng Mason and BOmmel elastic data. 
b Using Rayne and Chandrasekhar elastlc data. 

10 A. J. F. Boyle, D. St. P. Bunbury, C. Edwards, and H . E. 
Hall, Proc. Phys. Soc. (London) A77, 129 (1961). 

The Lel11pcralu re dependence of the function lI .. (T) 
ancl Lhe anisoLropy raLio ~(T) is given in Table IV. The 
anisotropy raLio is found to be only slightly temperature 
sensitive in agreement with Kagan's results" 

We are currently aware of two recent attempts at 
measuring the anisotropy ratio of j z/ j.= C-RlIu/ r RII ... 
One of these measurements has been attempted by 
Alekseyevsky ct at. ll and their conclusion is that 
jz/ j.= 1.4 over the whole temperature range. Their 
calculated Jz/ j. was determined from experimental 
data corrected for quadrupole efTects. 

It is app;trent that Lhe conclusions of Alckseyevsky 
ct at. are in disagreement wiLh our theoretical prediction. 
In fact, their conclusions that jz/ J.= 1.4 over the 80-
3000 K range imply thal the ansiotropy ratio ~(T), is 
not only strongly Lemperature dependent but increases 
as the tempemLure increases, which implies Lhat the 
lattice anisotropy is decreasing as the temperature in
creases. This is diflicult to believe because if the mean 
square displacement along the [OOlJ is larger at low 
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FIG. 6. Dispersion curves for white tin along [OOlJ direction in 
the Brillouin zone using Mason and Bommel elastic data. 

It N. E. Alekseyevsky, Pham Zuy Hien, V. G. Shapiro, V. S. 
Shunel, Zh. Eksperim. i Teor. Fiz. 43, 790 (1962) [translation: 
Soviet Phys.-JETP 16, 559 (1963)J. 
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temperatures than that along the [100J direction in Lh e 
harmonic region one would expect their ratio Lo be an 
increasing function of temperature (since the fun ctional 
dependence on frequency goes from (l/w) to (1 / w2 ) at 
high temperatures). Furthermore, the thermal expan
sion data show that the thermal expansion coellicienl 
along the [001 J is higher than along the [100J; 1 his 
should slil\ further increase the difTcrcncc. 

The other measurement is that of Meechan 1'/ (/1 . 12 of 
our laboratory who have obtained essentially I he same 
value for /z/ /. at room tempern.turc but no nH':lsurahlc 
difTerence for /r/ /. at 100 oK. 

This expcrimcntal discrcpancy must he rcsolwd hl'-

Thlll.I'. V. COl1lpnriRon of experimental 110(1 calculated vlllul'~ 
of the Dehye-Wnller fnctor nlong three crystnlllxes. 

A- S mod!'1 
Alckseyevsky cI al. I" ]1" 

l'(OK) 77 293 77 293 77 293 

~:u~ 
O.24±O.O5 O.054±O.OI 0.46 0.074 0.'11 0.05 

0.072±0.01 0.05 (Um 
0.36±0.06 0.076±0.01 0.39 0.lH5 o . .!(, O.OJ 

• Using MaBon and nUmmcl clastic data . 
b UsIng Rayne Dnd ChnndroBekhnr cla.tic dnto. 

fore we can make meaningful comparison between 
theory and experiment. 

The experimental and calculated angular dependcnce 
of the Mossbauer intensity for several temperatures is 
shown in Table V. The anisotropy ratios are compared 
in Table VI. Table VII gives the calculated ane! eXJleri 
mental speciflc13 heat from 1 to 300oK. As expec ted, the 
calculated specific heat values using Rayne and Chan
drasekhar's elastic data is slightly higher than that 
calculated using Mason and Bommel '5 elast ic data. 

II C. ]. Meechnn, A. H. 1\,luir, U. Gonser, H. Wirdl' l'~il'h , 11\111. 
Am. Phys. Soc. 7, 600 (1962). 

.. C. A. ShifTmnn, The Hent Capacities of the Elel11c nt ~ hl'low 
Room Temllernture, Genernl Electric Re~cllrrh I.lIhllrntory 
(nnpnhlhlhtl( ). 

T tl ll !.I·; VT. Comparison of cxperimental and calculated values 
o[ the anisotropy ratio E(T). 

.(T) 

77 
.100 

Alekseyevsky 
ct aI. 

0.715 
0.883 

" I htlllU M IIHOll fl lld IHhHlI1rl rlnHtlc clnln . 
" 11_1111{ R" y,,.. ,,,"I Chll ,,,tru"cklmr clll.tlc dlltn. 

A-S model 
I" Ilb 

1.17 
1.2 

1.15 
1.17 

Ill'! ween 6- 1 S Ol( the calculated values lLre low. It WItS 

il1lpossible to raise the lallice contrihution to the 
specific heal ill that temperature range without chang
ill~ I he low temperature agreement or C. and the Debye
W:tllcr factor. 

Thlll.1' vrr. COl11p:\ri~on of eX\lcrimclltnl and cnlc\lhltccl villues 
[or the totlll specif'c heal of w litc tin> (in units o[ cal mole-I 
dCIC'). 

T (O K) C •. (cxp) C.(I)b C.(I1)O 

I (l,()0046 0_00042 0.00045 
2 0.0014 0.0011 0.0015 
3 0.0032 0.0027 0.0042 
4 0.0067 0.0053 0.0074 
6 0.036 0.015 0.021 

IS 0.64 0.25 0.29 
50 3.M! 3.10 3.08 

ISO S.H5 5.55 5.53 
.100 6.3 5.97 5.97 

" 'Y -.1.5 X IO- t ,'nl 111 0 1(· - 1 clrR-1, 

b Ul'tfllJ( MmlO l1 111111 It lhlllllf'll'Im,tlc ,I"tn, 
• UHIII" H" y" ,· ",," CI"""lruHckhllr clnollc dntn. 
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